Inorg. Chem. **2003**, *42*, 5468−5470

A Fluorescent (*E***)-Poly(***p***-phenylenephosphaalkene) Prepared by a Phospha-Wittig Reaction**

Rhett C. Smith, Xufang Chen, and John D. Protasiewicz*

*Department of Chemistry, Case Western Reser*V*e Uni*V*ersity, Cle*V*eland, Ohio 44106-7078*

Received May 21, 2003

A soluble (*E*)-poly(*p*-phenylenephosphaalkene) having sterically encumbering ligands has been prepared by a phospha-Wittig reaction. This material exhibits a bathochromic shift with respect to *E*-PPV and with respect to representative model oligomers. We also report the first fluorescence study of a poly(*p*-phenylenephosphaalkene) and find that this material exhibits fluorescence, though with modest intensity relative to similarly sized carbon-based analogues.

Polymers featuring π -conjugation along the main chain are currently of great interest and importance.¹ Many such materials have been synthesized that incorporate heteroatoms in their backbones, notably poly(thiophene) and poly(aniline). Interaction of accessible lone pairs of electrons on these elements allows potential participation in π conjugation (np*π* interactions) and leads to interesting and unique properties versus all-carbon analogues. Several recent investigations have focused on the incorporation of other elements, notably phosphorus, into oligomers² and polymers³ featuring possible π conjugation (Chart 1).⁴ Possibly the most familiar synthetic polymers incorporating phosphorus are the polyphosphazenes and related systems that have been the subject of a large body of work.⁵ Such polymers clearly display valuable properties but do not display the type of extended *π* conjugation that is sought in the current study.

Phosphorus has become an attractive candidate for replacement of carbon in $p\pi$ - $p\pi$ conjugated materials due to its similar electronegativity; indeed, phosphorus has often been referred to as a "carbon copy",⁶ and calculations predict similar conjugative abilities for phosphorus and carbon in olefinic type bonds.7 Very recently, poly(*p*-phenylenephosphaalkene)s (**B**) have been prepared and shown to exhibit properties expected for conjugation.3b We have been working to prepare building blocks for integrating $P=C$ units within a stable extended framework. Recently, we described tetraarylbenzenes and their use for preparing diphosphaalkenes.⁸ The diphosphaalkenes were quickly prepared in good yields via a transient di-"phospha-Wittig"⁹ reagent (Scheme 1). This type of phospha-Wittig reaction¹⁰ generally proceeds in quantitative yield by NMR spectroscopic analysis and often gives >90% isolated yield, making this synthetic methodology amenable to the strict requirements of a successful step polymerization.11 The preliminary study reported herein represents the first application of a phospha-Wittig reaction,

- F., Eds; John Wiley and Sons: New York, 1998.
- (7) Nyulaszi, L.; Veszpremi, T.; Reffy, J. *J. Phys. Chem.* **¹⁹⁹³**, *⁹⁷*, 4011- 4015.
- (8) (a) Shah, S.; Concolino, T.; Rheingold, A. L.; Protasiewicz, J. D. *Inorg. Chem.* **²⁰⁰⁰**, *³⁹*, 3860-3867. (b) Shah, S.; Eichler, B. E.; Smith, R. C.; Power, P. P.; Protasiewicz, J. D. *New J. Chem.* **²⁰⁰³**, *²⁷*, 442- 445.
- (9) (a) Le Floch, P.; Marinetti, A.; Ricard, L.; Mathey, F. *J. Am. Chem. Soc.* **¹⁹⁹⁰**, *¹¹²*, 2407-2410. (b) Le Floch, P.; Mathey, F. *Synlett.* **¹⁹⁹⁰**, ¹⁷¹-172. (10) (a) Shah, S.; Protasiewicz, J. D. *J. Chem. Soc., Chem. Commun.* **1998**,
- ¹⁵⁸⁵-1586. (b) Shah, S.; Protasiewicz, J. D. *Coord. Chem. Re*V*.* **²⁰⁰⁰**, *210/1*, 181-201.
- (11) Odian, G. *Principles of Polymerization*; John Wiley and Sons: New York, 1991; Chapter 2.

5468 Inorganic Chemistry, Vol. 42, No. 18, 2003 10.1021/ic0345471 CCC: \$25.00 © 2003 American Chemical Society Published on Web 08/06/2003

^{*} To whom correspondence should be addressed. E-mail: jdp5@ po.cwru.edu.

^{(1) (}a) *Handbook of Conductive Materials and Polymers*; Nalwa, H. S., Ed.; John Wiley and Sons: New York, 1997. (b) Heeger, A. J. *Angew. Chem., Int. Ed.* **²⁰⁰¹**, *⁴⁰*, 2591-2611. (c) Kraft, A.; Grimsdale, A. C. *Angew. Chem., Int. Ed.* **¹⁹⁹⁸**, *³⁷*, 402-428. (d) MacDiarmid, A. G. *Angew. Chem., Int. Ed.* **²⁰⁰¹**, *⁴⁰*, 2581-2590. (e) Shirakawa, H. *Angew. Chem., Int. Ed.* **²⁰⁰¹**, *⁴⁰*, 2574-2580.

^{(2) (}a) Huy, N. H. T.; Ricard, L.; Mathey, F. *Angew. Chem., Int. Ed.* **²⁰⁰¹**, *⁴⁰*, 1253-1255. (b) Deschamps, E.; Ricard, L.; Mathey, F. *Angew. Chem., Int. Ed. Engl.* **¹⁹⁹⁴**, *³³*, 1158-1161. (c) Bevierre, M. O.; Mercier, F.; Ricard, L.; Mathey, F. *Angew. Chem., Int. Ed. Engl.* **¹⁹⁹⁰**, *²⁹*, 655-657. (d) Bevierre, M. O.; Mercier, F.; Ricard, L.; Mathey, F.; Jutland, A.; Amatore, C. *New J. Chem.* **¹⁹⁹¹**, *¹⁵*, 545- 550. (e) Hay, C.; Fischmeister, C.; Hissler, M.; Toupet, L.; Reau, R. *Angew. Chem., Int. Ed.* **²⁰⁰⁰**, *³⁹*, 1812-1815. (f) Hay, C.; Hissler, M.; Fischmeister, C.; Rault-Berthelot, J.; Toupet, L.; Nyulaszi, L.; Reau, R. *Chem. Eur. J.* **²⁰⁰¹**, *⁷*, 4222-4236. (g) Hay, C.; Sauthier, M.; Hissler, M.; Nyulaszi, L.; Reau, R. *Phosphorus, Sulfur Silicon Relat. Elem.* **²⁰⁰²**, *¹⁷⁷*, 1423-1425.

^{(3) (}a) Zhou, J.; Lucht, B. *J. Organomet. Chem.* **²⁰⁰²**, *653,* ¹⁶⁷-176. (b) Wright, V. A.; Gates, D. P. *Angew. Chem., Int. Ed.* **2002**, *41*, ²³⁸⁹-2392. (c) Morisaki, Y.; Aiki, Y.; Chujo, Y. *Macromolecules* **²⁰⁰³**, *³⁶*, 2594-2597. (d) Mao, S. S. H.; Tilley, T. D. *Macromolecules* **¹⁹⁹⁷**, *³⁰*, 5566-5569. (e) Honeyman, C. H.; Foucher, D. A.; Dahmen, F. Y.; Rulkens, R.; Lough, A. J.; Manners, I. *Organometallics* **1995**, *¹⁴*, 1283-1288. (f) Withers, H. P.; Seyferth, D. *Organometallics* **¹⁹⁸²**, *¹⁴*, 5503-5512.

⁽⁴⁾ Mathey, F. *Angew. Chem., Int. Ed.* **²⁰⁰³**, *⁴²*, 1578-1604. (5) (a) Allcock, H. R. *Science* **¹⁹⁷⁶**, *¹⁹³*, 1214-1219. (b) Allcock, H. R. *Angew. Chem., Int. Ed. Engl.* **¹⁹⁷⁷**, *⁸⁹*, 153-162. (c) Allcock, H. R. *J. Inorg. Organomet. Polym.* **¹⁹⁹²**, *²*, 197-211. (d) Allcock, H. R. *Chem. Mater.* **¹⁹⁹⁴**, *⁶*, 1476-1491. (e) Allcock, H. R. *Ad*V*. Chem.* **¹⁹⁹⁶**, *²⁴⁸*, 1-29. (f) Manners, I. *Angew. Chem., Int. Ed. Engl.* **¹⁹⁹⁶**, *³⁵*, 1603-1621. (6) *Phosphorus: The Carbon Copy*; Dillon, K. B., Mathey, F., Nixon, J.

Chart 1. Some Polymers with Possible π Conjugation Involving Phosphorus

Scheme 1

Scheme 2

a novel analogue of the classic organic reaction, to polymer synthesis.

In order to extend the phospha-Wittig methodology in Scheme 1 for polymer synthesis, conjugated dialdehydes were used in place of benzaldehyde (Scheme 2). Mixtures of 1, dialdehydes $2a - c$, zinc dust, and PMe₃ were allowed to stir in THF overnight. In each case, highly colored materials were obtained; however, full characterization of these polymers (**3a**-**c**) was thwarted by their very limited solubility in organic solvents, a difficulty also observed for unsubstituted PPV.1a Analysis of the soluble fractions of the reaction mixtures showed the presence of $O=PMe_3$ as the only phosphorus containing species, indicating the intended coupling most likely occurred. To overcome this obstacle, dialdehyde **2d**¹² was chosen for reaction with **1**, as its

Figure 1. 31P NMR spectrum for crude reaction mixture of **3d** after removal of volatiles.

Chart 2

hexyloxy side chains should engender solubility as they often do for PPVs. This approach indeed leads to the successful synthesis of a hexanes-soluble poly(*p*-phenylenephosphaalkene) **3d** as an orange powder after stirring the reactants for 8 h at room temperature.13 Spectroscopic analysis (31P NMR) confirms the complete consumption of **1**, and after removal of volatiles in vacuo, only peaks assignable to **3d** and to trimethylphosphine oxide are present (Figure 1). The two broad 31P NMR resonances for **3d** represent internal and end group $P=C$ units, and the integrations of these signals parallel the ¹H NMR spectral results. An additional significant aspect of this phospha-Wittig reaction is that only *E*-phosphaalkenes are produced, making this method ideal for the preparation of *π* conjugated materials.

End group analysis (¹H NMR integrations of phosphaalkene versus aldehydic protons) indicates that the average degree of polymerization is 6, corresponding to a material with an average of 12 ($P=C$) units per chain with a modest M_n estimated at 6500 g mol⁻¹. Bis-phosphaalkene **4** (Chart 2) was also prepared as an oligomeric model for **3d**, and absorption and fluorescence spectra (Figure 1) were collected for the two materials. The absorption maximum of 445 nm for **3d** represents a substantial red shift as compared to the only other known poly(*p*-phenylenephosphaalkene)^{3b} (**B**, λ_{max} $=$ 338 nm, $Z/E = 1.14$) and even a 19 nm red shift versus *E*-PPV ($\lambda_{\text{max}} = 426 \text{ nm}$),¹⁴ despite the modest conjugation length in **3d**. The absorption maximum for polymer **3d** is identical to that for model compound **4**; thus, the increased color of the former material arises from the broader absorp-

⁽¹²⁾ Peng, Z.; Gharavi, A. R.; Yu, L. *J. Am. Chem. Soc.* **¹⁹⁹⁷**, *¹¹⁹*, 4622- 4632.

⁽¹³⁾ **3d** (24.8%): ¹H NMR (CDCl₃) δ 0.89–1.31 (br, 58H), 3.40–3.90 (br, 4H), 6.50–7.20 (br, 18H), 8.40–8.80 (br, 2H), 10.32 (br, 0.17H (br, 4H), 6.50–7.20 (br, 18H), 8.40–8.80 (br, 2H), 10.32 (br, 0.17H per repeat unit); ³¹P{¹H} NMR(CDCl₃) *δ* 250.5 (br, internal P=C), 270.6 (s, end group P=C).

⁽¹⁴⁾ Simmons, W. W. *The Stadtler Handbook of Ultraviolet Spectra*; Stadtler Research Laboratories: Philadelphia, 1979.

COMMUNICATION

tion that extends further into the visible region compared to the latter. These data can also be compared to absorption data for two other structurally related diphosphaalkenes **E** and **F** (Chart 2 and Scheme 1) that display λ_{max} values of 349 and 411 nm, respectively. The lower energy transition (presumably $\pi-\pi^*$) for **F** may be ascribed in part to the fact that better conjugation of the two $P=C$ units occurs across the less hindered phenylene linker. The significant bathochromic shift (34 nm) in the $\pi-\pi^*$ transition of 4 compared to that of **F** is largely attributable to the electronic effects due to substitution of the central ring in **4** with strongly electron-donating alkoxy groups. Similar effects are well established in PPV systems,¹⁵ as demonstrated by the progressively lower energy $\pi-\pi^*$ transition upon comparing unsubstituted PPV (426 nm), poly(phenylenevinylene-*alt*-2,5-di-*n*-alkoxyphenylenevinylene)s (∼459 nm),¹⁶ and poly-(2,5-dimethoxyphenylenevinylene)s (∼474 nm).17

Both **3d** and **4** showed fluorescence (Figure 2), with the fluorescence intensity per $P=C$ unit in the polymer observed to be a factor of 3.3 greater than that of **4** and approximately 8% that of *E*-stilbene. The weaker fluorescence intensity in **3d** versus its all-carbon analogues may be due to quenching by the phosphorus lone pair, or simply a heavy atom effect.¹⁸ The steric bulk employed in our choice of linker also endows

- (16) Bao, Z.; Chen, Y.; Cai, R.; Yu, L. *Macromolecules* **¹⁹⁹³**, *²⁶*, 5281- 5286.
- (17) Jin, J.-I.; Kim, J.-C. *Macromolecules* **¹⁹⁹²**, *²⁵*, 5519-5523.
- (18) (a) Drago, R. S. *Physical Methods in Chemistry*; W. B. Saunders: Philadelphia, 1977; Chapter 5. (b) Kang, Y.; Song, D.; Schmider, H.; Wang, H. *Organometallics* **²⁰⁰²**, *21,* ²⁴¹³-2421. (c) Werner, T. C.; Hawkins, W.; Facci, J.; Torrisi, R.; Trembath, T. J. *J. Phys. Chem.* **¹⁹⁷⁸**, *82,* ²⁹⁸-302.

Figure 2. Fluorescence spectra of 3d and 4 (CHCl₃) relative to (*E*)-stilbene.

3d with a good degree of air stability, with no change being observed by 31P NMR after the solid was allowed to stand open to air for one week. The steric factors in **3d** thus aid thermal stability compared to **B**, although the stabilization is not complete, as solutions of this material still undergo reaction with air and moisture.

In summary, a soluble (*E*)-poly(*p*-phenylenephosphaalkene) with modest air stability imparted by sterically encumbering ligands has been prepared by a phospha-Wittig reaction. This material exhibits a bathochromic shift with respect to unsubstituted *E*-PPV. We also report the first fluorescence study of a poly(*p*-phenylenephosphaalkene) and find that this material does exhibit fluorescence, though with modest intensity relative to carbon-based analogues. Current efforts are underway to access soluble analogues of **3a**-**c**, as well as to optimize experimental conditions for maximum degree of polymerization of the resultant polymers.

Acknowledgment. The authors thank Prof. Christoph Weder and Prof. Malcolm E. Kenney for use of instrumentation and the National Science Foundation (Grant CHE-0202040) for support.

Supporting Information Available: Full experimental details for synthesis and characterization of **3** and **4**. This material is available free of charge via the Internet at http://pubs.acs.org.

IC0345471

^{(15) (}a) Askari, S. H.; Rughooputh, S. D.; Wudl, F. *Synth. Met.* **1989**, *29*, E129-E134. (b) Han, C.-C.; Elsenbaumer, R. L. *Mol. Cryst. Liq. Cryst.* **¹⁹⁹⁰**, *¹⁸⁹*, 183-192. (c) Sonoda, Y.; Kaeriyama, K. *Bull. Chem. Soc. Jpn.* **¹⁹⁹²**, *⁶⁵*, 853-857. (d) Sarnecki, G. J.; Burn, P. L.; Kraft, A.; Friend, R. H.; Holmes, A. B. *Synth. Met.* **¹⁹⁹³**, *⁵⁵*-*57*, 914-917. (e) Hamaguchi, M.; Yoshino, K. *Jpn. J. Appl. Phys.* **¹⁹⁹⁴**, *³³*, L1478- L1481. (f) Dehong, H.; Yu, J.; Barbara, P. F. *J. Am. Chem.. Soc.* **1999**, *¹²¹*, 6936-6937.